Abstract
In this paper, generalized higher-order contingent (adjacent) derivatives of set-valued maps are introduced and some of their properties are discussed. Under no any convexity assumptions, necessary and sufficient optimality conditions are obtained for weakly efficient solutions of set-valued optimization problems by employing the generalized higher-order derivatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.