Abstract

Two higher-order fractional viscoelastic material models consisting of the fractional Voigt model (FVM) and the fractional Maxwell model (FMM) are considered. Their higher-order fractional constitutive equations are derived due to the models’ constructions. We call them the higher-order fractional constitutive equations because they contain three different fractional parameters and the maximum order of equations is more than one. The relaxation and creep functions of the higher-order fractional constitutive equations are obtained by Laplace transform method. As particular cases, the analytical solutions of standard (integer-order) quadratic constitutive equations are contained. The generalized Mittag–Leffler function and H-Fox function play an important role in the solutions of the higher-order fractional constitutive equations. Finally, experimental data of human cranial bone are used to fit with the models given by this paper. The fitting plots show that the models given in the paper are efficient in describing the property of viscoelastic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.