Abstract

We prove a uniform C^alpha estimate for collapsing Calabi-Yau metrics on the total space of a proper holomorphic submersion over the unit ball in C^m. The usual methods of Calabi, Evans-Krylov, and Caffarelli do not apply to this setting because the background geometry degenerates. We instead rely on blowup arguments and on linear and nonlinear Liouville theorems on cylinders. In particular, as an intermediate step, we use such arguments to prove sharp new Schauder estimates for the Laplacian on cylinders. If the fibers of the submersion are pairwise biholomorphic, our method yields a uniform C^infinity estimate. We then apply these local results to the case of collapsing Calabi-Yau metrics on compact Calabi-Yau manifolds. In this global setting, the C^0 estimate required as a hypothesis in our new local C^alpha and C^infinity estimates is known to hold thanks to earlier work of the second-named author.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.