Abstract
The controlled energy deposition by nonlinear absorption of ultrashort laser pulses offers a variety of different processing strategies for the machining of wide-bandgap materials. Considering laser-glass cutting applications, efficient single pass processes with volume modifications along the entire substrate thickness become possible using adapted focal field distributions [1]. The required extreme aspect ratios of longitudinal (given by glass thickness) to transverse (diffraction limit) beam dimensions are met by the class of Bessel-like beams that can be generated efficiently using phase-only spatial light modulators (SLMs) [2]. Simple multiplexing π-phase jumps or phase vortices ∝ exp (ilθ) into the Fresnel-axicon-type phase mask [cf. Fig. 1(a)] enables to generate Bessel-like beams exhibiting ring- and petal-like transverse intensity distributions, respectively, while keeping the non- diffracting and self-healing beam properties [3]. By using pump-probe microscopy we proof that the resulting absorption distribution and, thus, the spatial energy deposition inside the material follows accurately the beam's simulated intensity profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.