Abstract
In this paper we revisit the classical problem of interval estimation for one-binomial parameter and for the log odds ratio of two binomial parameters. We examine the confidence intervals provided by two versions of the modified log likelihood root: the usual Barndorff-Nielsen's r * and a Bayesian version of the r * test statistic. For the one-binomial problem, this work updates the findings of Brown et al. [2003. Interval estimation in exponential families. Statistica Sinica 13, 19–49; 2002. Confidence intervals for a binomial proportion and asymptotic expansion. The Annals of Statistics 30, 160–201] and Cai [2005. One-sided confidence intervals in discrete distributions. Journal of Statistical Planning and Inference 131, 63–88] to higher-order methods. For the log odds ratio of two binomial parameters we show via Edgeworth expansion that both versions of the r * statistics give confidence intervals which nearly completely eliminate the systematic bias in the unconditional smooth coverage probability. We also give expansions for the length of the confidence intervals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.