Abstract

In the current paper, a powerful approximate analytical approach namely the global residue harmonic balance method (GRHBM) is proposed for obtaining higher-order approximate frequency and periodic solution of nonlinear conservative oscillatory systems arising in engineering problems. The proposed method has a main difference with other traditional harmonic balance methods such that the residual errors obtained in pervious order approximation are used in the present one. Comparison of the obtained results with the exact and numerical solution as well as well-known analytical methods such as Hamiltonian approach, Max–Min approach, variational approach, and He’s amplitude–frequency formulation reveals the correctness and usefulness of the GRHBM. It is shown that the results are valid for different values of system parameters and both small and large amplitudes. Hence, the method can be easily applied to other strongly nonlinear conservative oscillatory systems. Furthermore, using the obtained analytical expressions, the effect of amplitude and system parameters on nonlinear frequency is studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call