Abstract
The purpose of this paper is to collect and make explicit the results of Gel'fand, Graev and Piatetski-Shapiro and Miyazaki for the $GL(3)$ cusp forms which are non-trivial on $SO(3,\mathbb{R})$. We give new descriptions of the spaces of cusp forms of minimal $K$-type and from the Fourier-Whittaker expansions of such forms give a complete and completely explicit spectral expansion for $L^2(SL(3,\mathbb{Z})\backslash PSL(3,\mathbb{R}))$, accounting for multiplicities, in the style of Duke, Friedlander and Iwaniec's paper on Artin $L$-functions. We directly compute the Jacquet integral for the Whittaker functions at the minimal $K$-type, improving Miyazaki's computation. The primary tool will be the study of the differential operators coming from the Lie algebra on vector-valued cusp forms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.