Abstract
AbstractSalt marsh habitats contain some of the highest quantities of soil organic carbon (C) per unit area, but increasing anthropogenic stressors threaten their ability to maintain themselves as large C reservoirs in some regions. We quantify rates of C gas exchange (methane [CH4] and carbon dioxide [CO2]) monthly across a 16‐month period from a low nitrogen “reference” salt marsh on Cape Cod in New England using static chambers. While the summer period is the most dynamic period of marsh C gas exchange, we observed substantial fluxes in the early summer through late fall, highlighting the importance of including shoulder seasons in studies of marsh C exchange. We estimate annual ecosystem respiration between 108 and 252 g C m−2 yr−1, which varied based on temperature and elevation. This flux is lower than in other nearby marshes, which we attribute to the frequently inundated, microtidal nature of the site, resulting in the majority of respired CO2 being exported via lateral, not vertical, fluxes from this marsh. We observed significantly higher temperature sensitivity from the low elevation of the marsh compared to the high marsh. Recent acceleration in the rate of sea level rise is leading to a well‐documented expansion of low marsh into high marsh vegetation zones in this marsh system and others in the region. While rates of C burial are higher in the low marsh compared to the high marsh, the higher temperature sensitivity of respiration in the low marsh may diminish the longevity of marsh C stocks with climate warming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.