Abstract

Pearlmillet is themain subsistence crop for smallholder farmers systemswhere it is grown at low plant density. Intensifying pearl millet cultivation could boost productivity although it may have trade-offs. Increasing planting density would indeed increase the leaf area and the related water budget, whereas a denser canopy could create a more favorable canopymicroclimate to the benefit of the water use efficiency (WUE) of the crops. The first aim of this work was to test the yield response of popular pearlmillet varieties to an increased density and to assess possible genotypic variation in this response. The second aim was to measure the water use and the WUE of the crop in different densities. To this end we designed several field and lysimetric experiments To increase the robustness of the results, these trials were carried out in India and Senegal, using two independent sets of genotypes adapted to both sites. In the field, the higher sowing density significantly increased yield in all genotypes when trials were carried out in high evaporative demand conditions. There was no genotype x density interaction in these trials, suggesting no genotypic variation in the response to density increase. The high-density treatment also decreased the vapor pressure deficit (VPD) in the canopies, both in the field and in the lysimeter experiments. In the lysimeter trials, although the higher density treatment increased water use, the resulting increase in biomass was proportionally higher, hence increasingWUE of the crops in all genotypes under high density. The increase in yield under high density was closely related to the increase in WUE, although this link was more tight in the high- than in the low evaporative demand seasons. This confirmed a strong environmental effect on the response to density of all genotypes tested. Although they did not open a scope for breeding density tolerant cultivars, these results highlight the possibility to improve pearl millet yield by increasing the density, targeting specifically areas facing high evaporative demand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.