Abstract
The limited spatial sampling rates of conventional Shack–Hartmann wavefront sensors (SHWFSs) make them unable to sense higher-order wavefront distortion. In this study, by etching a known phase on each microlens to modulate sub-wavefront, we propose a higher-resolution wavefront reconstruction method that employs a modified modal Zernike wavefront reconstruction algorithm, in which the reconstruction matrix contains quadratic information that is extracted using a neural network. We validate this method through simulations, and the results show that once the network has been trained, for various atmospheric conditions and spatial sampling rates, the proposed method enables fast and accurate high-resolution wavefront reconstruction. Furthermore, it has highly competitive advantages such as fast dataset generation, simple network structure, and short prediction time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.