Abstract

Today, we human beings are facing with high-quality virtual world of a completely new nature. For example, we have a digital display consisting of a high enough resolution that we cannot distinguish from the real world. However, little is known how such high-quality representation contributes to the sense of realness, especially to depth perception. What is the neural mechanism of processing such fine but virtual representation? Here, we psychophysically and physiologically examined the relationship between stimulus resolution and depth perception, with using luminance-contrast (shading) as a monocular depth cue. As a result, we found that a higher resolution stimulus facilitates depth perception even when the stimulus resolution difference is undetectable. This finding is against the traditional cognitive hierarchy of visual information processing that visual input is processed continuously in a bottom-up cascade of cortical regions that analyze increasingly complex information such as depth information. In addition, functional magnetic resonance imaging (fMRI) results reveal that the human middle temporal (MT+) plays a significant role in monocular depth perception. These results might provide us with not only the new insight of our neural mechanism of depth perception but also the future progress of our neural system accompanied by state-of- the-art technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.