Abstract

We study $q$-series-valued invariants of 3-manifolds that depend on the choice of a root system $G$. This is a natural generalization of the earlier works by Gukov-Pei-Putrov-Vafa [arXiv:1701.06567] and Gukov-Manolescu [arXiv:1904.06057] where they focused on $G={\rm SU}(2)$ case. Although a full mathematical definition for these ''invariants'' is lacking yet, we define $\hat{Z}^G$ for negative definite plumbed 3-manifolds and $F_K^G$ for torus knot complements. As in the $G={\rm SU}(2)$ case by Gukov and Manolescu, there is a surgery formula relating $F_K^G$ to $\hat{Z}^G$ of a Dehn surgery on the knot $K$. Furthermore, specializing to symmetric representations, $F_K^G$ satisfies a recurrence relation given by the quantum $A$-polynomial for symmetric representations, which hints that there might be HOMFLY-PT analogues of these 3-manifold invariants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.