Abstract
Stroke is a dramatic complication of sickle cell disease (SCD), which is associated with cerebral vasculopathies including moya moya, intravascular thrombi, cerebral hyperemia, and increased vessel tortuosity. The spontaneous occurrence of these pathologies in the sickle cell mouse model has not been described. Here, we studied Townes humanized sickle cell and age-matched control mice that were 13 months old. We used in vivo two-photon microscopy to assess blood flow dynamics, vascular topology, and evidence of cerebral vasculopathy. Results showed that compared to controls, sickle cell mice had significantly higher red blood cell (RBC) velocity (0.73 mm/s vs. 0.55 mm/s, p = 0.013), capillary vessel diameter (4.84 µM vs. 4.50 µM, p = 0.014), and RBC volume flux (0.015 nL/s vs. 0.010 nL/s, p = 0.021). Also, sickle cell mice had significantly more tortuous capillary vessels (p < 0.0001) and significantly shorter capillary vessel branches (p = 0.0065) compared to controls. Sickle cell mice also had significantly higher number of capillary occlusive events (3.4% vs. 1.9%, p < 0.0001) and RBC stalls (3.8% vs. 2.1%, p < 0.0001) in the cerebral capillary bed. In post-mortem immunohistochemical analyses, sickle cell mice had a 2.5-fold higher frequency of cortical microinfarcts compared to control mice. Our results suggest that aged Townes sickle cell mice spontaneously develop SCD-associated cerebral vasculopathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.