Abstract
A rigorous mathematical formulation of higher powers of quantum white noises is given on the basis of the most recent theory of white noise distributions due to Cochran, Kuo and Sengupta. The renormalized quantum Itô formula due to Accardi, Lu and Volovich is derived from the renormalized product formula based on integral kernel operators on white noise functions. During the discussion, the analytic characterization of operator symbols and the expansion theorem for a white noise operator in terms of integral kernel operators are established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Infinite Dimensional Analysis, Quantum Probability and Related Topics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.