Abstract

Quantum engineering of topological superconductors and of the ensuing Majorana zero modes might hold the key for realizing topological quantum computing and topology-based devices. Magnet-superconductor hybrid (MSH) systems have proven to be experimentally versatile platforms for the creation of topological superconductivity by custom-designing the complex structure of their magnetic layer. Here, we demonstrate that higher order topological superconductivity (HOTSC) can be realized in two-dimensional MSH systems by using stacked magnetic structures. We show that the sensitivity of the HOTSC to the particular magnetic stacking opens an intriguing ability to tune the system between trivial and topological phases using atomic manipulation techniques. We propose that the realization of HOTSC in MSH systems, and in particular the existence of the characteristic Majorana corner modes, allows for the implementation of a measurement-based protocols for topological quantum computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.