Abstract
Topological phases open a door to such intriguing phenomena as unidirectional propagation and disorder-resilient localization at a stable frequency. Recently discovered higher-order topological phases further extend the concept of topological protection enabling versatile control over localization in multiple dimensions. Motivated by the recent advances in quantum technologies such as large coherently operating qubit ensembles, we predict and investigate the higher-order topological phase of photon pairs emerging due to effective photon-photon interaction and described by the extended version of Bose-Hubbard model. Being feasible for state-of-the-art experimental capabilities, the designed model provides an interesting example of interaction-induced topological transitions in the few-particle two-dimensional system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.