Abstract

Sensory experience and perceptual learning changes receptive field properties of cortical pyramidal neurons (PNs), largely mediated by synaptic long-term potentiation (LTP). The circuit mechanisms underlying cortical LTP remain unclear. In the mouse somatosensory cortex, LTP can be elicited in layer 2/3PNs by rhythmic whisker stimulation. We dissected the synaptic circuitry underlying this typeof plasticity in thalamocortical slices. We found that projections from higher-order, posterior medial thalamic complex (POm) are key to eliciting N-methyl-D-aspartate receptor (NMDAR)-dependent LTP of intracortical synapses. Paired activation of cortical and higher-order thalamocortical inputs increased vasoactive intestinal peptide (VIP) and parvalbumin (PV) interneuron (IN) activity and decreased somatostatin (SST) IN activity, which together disinhibited the PNs. VIP IN-mediated disinhibition was critical for inducing LTP. This study reveals a circuit motif in which higher-order thalamic inputs gate synaptic plasticity via disinhibition. This motif may allow contextual feedback to shape synaptic circuits that process first-order sensory information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call