Abstract

We present subspace-based schemes for the estimation of the poles (angular frequencies and damping factors) of a sum of damped and delayed sinusoids. In our model, each component is supported over a different time frame, depending on the delay parameter. Classical subspace-based methods are not suited to handle signals with varying time supports. In this contribution, we propose solutions based on the approximation of a partially structured Hankel-type tensor on which the data are mapped. We show, by means of several examples, that the approach based on the best rank-(R1,R2,R3) approximation of the data tensor outperforms the current tensor and matrix-based techniques in terms of the accuracy of the angular frequency and damping factor parameter estimates, especially in the context of difficult scenarios as in the low signal-to-noise ratio regime and for closely spaced sinusoids

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.