Abstract

Acoustic vector sensor (AVS) measures acoustic pressure as well as the acoustic particle velocity to estimate the acoustic intensity. The acoustic intensity, which is a vector quantity, represents the magnitude and direction of the active or propagating part of an acoustic field, thus indicating the direction-of-arrival (DOA) of the received signal. This article proposes higher order statistics (HOS)-based DOA estimation with a single acoustic vector sensor in the underdetermined case where the number of sources is more than the number of sensors constituting a single vector sensor. The use of HOS allows the increase in the number of degrees of freedom, thereby resulting in increase in uniquely identifiable sources. It has been established that in an ideal condition, a single AVS using fourth-order statistics is capable of uniquely identifying eight sources with not more than four sources in a single plane. The number of sources can be further increased by working with HOS. Additional advantages of the proposed algorithm, such as robustness against the presence of nonidentical Gaussian noise or spatially correlated Gaussian noise at each constituent sensor of a single AVS, improved performance over second-order statistics-based algorithm, and ability to identify multiple wideband sources, have also been demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.