Abstract
AbstractBreast cancer is a leading cancer affecting women worldwide. Mammography is a scanning procedure involvingX‐rays of the breast. It causes discomfort and may cause high incidence of false negatives. Breast thermography is a new screening method of breast that helps in the early detection of cancer. It is a non‐invasive imaging procedure that captures the infrared heat radiating off from the breast surface using an infrared camera. The main objective of this work is to evaluate the use of higher order spectral features extracted from thermograms in classifying normal and abnormal thermograms. For this purpose, we extracted five higher order spectral features and used them in a feed‐forward artificial neural network (ANN) classifier and a support vector machine (SVM). Fifty thermograms (25 each of normal and abnormal) were used for analysis.SVM presented a good sensitivity of 76% and specificity of 84%, and theANN classifier demonstrated higher values of sensitivity (92%) and specificity (88%). The proposed system, therefore, shows great promise in automatic classification of normal and abnormal breast thermograms without the need for subjective interpretation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.