Abstract
Higher order singular value decomposition is studied in the context of quantum chemistry, with particular focus on the decomposition of the 𝒯 2 amplitudes obtained from second order Møller Plesset perturbation (MP2) theory calculations. Our test calculations reveal that HOSVD transformed amplitudes yield considerably faster convergence in MP2 correlation energy, both in terms of amplitude and orbital truncation. Also, HOSVD orbitals display increased bonding/antibonding character compared to Hartree–Fock orbitals. In contrast to canonical MP2 theory, the leading amplitudes are those between corresponding occupied–virtual orbital pairs. The HOSVD orbitals are paired up automatically around the Fermi level in decreasing importance, so that the strongest occupied virtual–pair are the highest occupied molecular orbital and lowest unoccupied molecular orbital. We show that in the case of MP2 amplitudes, the HOSVD orbitals are equivalent to the unrelaxed MP2 natural orbitals. The least squares higher order orthogonal iteration algorithm yields only minor improvements over the sub-optimal truncated orbital space obtained from the HOSVD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.