Abstract

We present a higher order generalization for relaxation methods in the framework presented by Jin and Xin in [10]. The schemes employ general higher order integration for spatial discretization and higher order implicit-explicit (IMEX) schemes or Total Variation diminishing (TVD) Runge–Kutta schemes for time integration of relaxing or relaxed schemes, respectively, for time integration. Numerical experiments are performed on various test problems, in particular, the Burger's and Euler equations of inviscid gas dynamics in both one and two space dimensions. In addition, uniform convergence with respect to the relaxation parameter is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.