Abstract
This article studies the logical properties of a very general class of infinite ranked trees, namely, those generated by higher-order recursion schemes. We consider, for both monadic second-order logic and modal -calculus, three main problems: model-checking, logical reflection (a.k.a. global model-checking, that asks for a finite description of the set of elements for which a formula holds), and selection (that asks, if exists, for some finite description of a set of elements for which an MSO formula with a second-order free variable holds). For each of these problems, we provide an effective solution. This is obtained, thanks to a known connection between higher-order recursion schemes and collapsible pushdown automata and on previous work regarding parity games played on transition graphs of collapsible pushdown automata.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.