Abstract

A higher order numerical discretization technique based on Minimum Sobolev Norm (MSN) interpolation was introduced in our previous work. In this article, the discretization technique is presented as a tool to solve two hard classes of PDEs, namely, the exterior Laplace problem and the biharmonic problem. The exterior Laplace problem is compactified and the resultant near singular PDE is solved using this technique. This finite difference type method is then used to discretize and solve biharmonic type PDEs. A simple book keeping trick of using Ghost points is used to obtain a perfectly constrained discrete system. Numerical results such as discretization error, condition number estimate, and solution error are presented. For both classes of PDEs, variable coefficient examples on complicated geometries and irregular grids are considered. The method is seen to have high order of convergence in all these cases through numerical evidence. Perhaps for the first time, such a systematic higher order procedure for irregular grids and variable coefficient cases is now available. Though not discussed in the paper, the idea seems to be easily generalizable to finite element type techniques as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.