Abstract

Despite the widespread adoption of higher-order mathematical structures such as hypergraphs, methodological tools for their analysis lag behind those for traditional graphs. This work addresses a critical gap in this context by proposing two microcanonical random null models for directed hypergraphs: the directed hypergraph degree model () and the directed hypergraph JOINT model (). These models preserve essential structural properties of directed hypergraphs such as node in- and out-degree sequences and hyperedge head- and tail-size sequences, or their joint tensor. We also describe two efficient Markov chain Monte Carlo algorithms, - and -, to sample random hypergraphs from these ensembles. To showcase the interdisciplinary applicability of the proposed null models, we present three distinct use cases in sociology, epidemiology, and economics. First, we reveal the oscillatory behavior of increased homophily in opposition parties in the U.S. Congress over a 40-year span, emphasizing the role of higher-order structures in quantifying political group homophily. Second, we investigate a nonlinear contagion in contact hypernetworks, demonstrating that disparities between simulations and theoretical predictions can be explained by considering higher-order joint degree distributions. Last, we examine the economic complexity of countries in the global trade network, showing that local network properties preserved by explain the main structural economic complexity indexes. This work advances the development of null models for directed hypergraphs, addressing the intricate challenges posed by their complex entity relations, and providing a versatile suite of tools for researchers across various domains. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.