Abstract

This paper is concerned with the treatment of higher order multi-grid techniques for obtaining accurate finite difference approximations to partial differential equations. The three basic techniques considered are a multi-grid process involving smoothing via higher order difference approximations, iterated defect corrections with multi-grid used as an inner loop equation solver, and tau-extrapolation. Efficient versions of each of these three basic schemes are developed and analyzed by local mode analysis and numerical experiments. The numerical tests focus on fourth and sixth order discretizations of Poisson’s equations and demonstrate that the three methods performed similarly yet substantially better than the usual multi-grid method, even when the right-hand side lacked sufficient smoothness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.