Abstract

Previous behavioral and physiological research has demonstrated that as the behavioral relevance of potential saccade goals increases, they elicit more competition during target selection processing as evidenced by increased saccade curvature and neural activity. However, these effects have only been demonstrated for lower order feature singletons, and it remains unclear whether more complicated featural differences between higher order objects also elicit vector modulation. Therefore, we measured human saccades curvature elicited by distractors bilaterally flanking a target during a visual search saccade task and systematically varied subsets of features shared between the two distractors and the target, referred to as objective similarity (OS). Our results demonstrate that saccades deviated away from the distractor highest in OS to the target and that there was a linear relationship between the magnitude of saccade deviation and the number of feature differences between the most similar distractor and the target. Furthermore, an analysis of curvature over the time course of the saccade demonstrated that curvature only occurred in the first 20-30 ms of the movement. Given the multifeatural complexity of the novel stimuli, these results suggest that saccadic target selection processing involves dynamically reweighting vector representations for movement planning to several possible targets based on their behavioral relevance. NEW & NOTEWORTHY We demonstrate that small featural differences between unfamiliar, higher order object representations modulate vector weights during saccadic target selection processing. Such effects have previously only been demonstrated for familiar, simple feature singletons (e.g., color) in which features characterize entire objects. The complexity and novelty of our stimuli suggest that the oculomotor system dynamically receives visual/cognitive information processed in the higher order representational networks of the cortical visual processing hierarchy and integrates this information for saccadic movement planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call