Abstract

The present paper deals with the derivation of a higher order theory of interface models. In particular, it is studied the problem of two bodies joined by an adhesive interphase for which “soft” and “hard” linear elastic constitutive laws are considered. For the adhesive, interface models are determined by using two different methods. The first method is based on the matched asymptotic expansion technique, which adopts the strong formulation of classical continuum mechanics equations (compatibility, constitutive and equilibrium equations). The second method adopts a suitable variational (weak) formulation, based on the minimization of the potential energy. First and higher order interface models are derived for soft and hard adhesives. In particular, it is shown that the two approaches, strong and weak formulations, lead to the same asymptotic equations governing the limit behavior of the adhesive as its thickness vanishes. The governing equations derived at zero order are then put in comparison with the ones accounting for the first order of the asymptotic expansion, thus remarking the influence of the higher order terms and of the higher order derivatives on the interface response. Moreover, it is shown how the elastic properties of the adhesive enter the higher order terms. The effects taken into account by the latter ones could play an important role in the nonlinear response of the interface, herein not investigated. Finally, two simple applications are developed in order to illustrate the differences among the interface theories at the different orders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.