Abstract

Higher order J-A2 solution has been developed to improve the HRR singular solution under ideal plane strain conditions in power-law hardening solids with the the second A2 being considered to take into account of the in-plane constraint effect, and the J-Tz singular solution has been obtained for three-dimensional (3D) cracked body by introducing the out-of-plane stress constraint factor Tz. Here a higher order J-Tz-AT solution is developed on the basis of the J-Tz and J-A2 solutions and validated against comprehensive 3D finite element (FE) analyses for specimens with through-thickness, surface, embedded and corner cracks. It is shown that better agreements are obtained between the higher order J-Tz-AT solution and 3D FE results in all simulated conditions than previously available two- or three-parameter solutions. For specimens of high in-plane constraint, such as the single-edge cracked tension specimen, compact specimen and single-edge-notched bending specimen under three-point bending, the J-Tz leading singular solution itself shows sufficient accuracy. This universal characterization of crack border stress fields confirms that the developed J-Tz-AT solution combines the advantages of the J-Tz and J-A2 solutions, which can service as a solid foundation of elastic-plastic fracture mechanics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.