Abstract

A 6-node triangular hybrid stress element is presented for Mindlin plate in this paper. The proposed element, denoted by $$\hbox {TH6-27}\upbeta $$TH6-27β, can pass both the zero shear stress patch test and the non-zero constant shear stress enhanced patch test and, it can be employed to analyze very thin plate. To accomplish this purpose, special attention is devoted to selecting boundary displacement interpolation and stress approximation in domain. The arbitrary order Timoshenko beam function is used successfully to derive the displacement interpolation along each side of the element. According to the equilibrium equations, an appropriate stress approximation is rationally obtained. The assumed stress field is modified by using $$27\upbeta $$27β instead of $$15\upbeta $$15β to improve the accuracy. Numerical results show that the element is free of shear locking, and reliable for thick and thin plates. Moreover, it has no spurious zero energy modes and with geometric invariance (coordinate invariance, node sequencing independence).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.