Abstract

In this paper, our aim is to study the high order finite difference method for the reaction and anomalous-diffusion equation. According to the equivalence of the Riemann–Liouville and Grünwald–Letnikov derivatives under the suitable smooth condition, a second-order difference approximation for the Riemann–Liouville fractional derivative is derived. A fourth-order compact difference approximation for second-order derivative in spatial is used. We analyze the solvability, conditional stability and convergence of the proposed scheme by using the Fourier method. Then we obtain that the convergence order is O(τ2+h4), where τ is the temporal step length and h is the spatial step length. Finally, numerical experiments are presented to show that the numerical results are in good agreement with the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.