Abstract

We investigate spin dynamics in nanodisk arrays of synthetic-antiferromagnets (SAF) made of Py/NiCu/Py trilayers, where the NiCu spacer undergoes a Curie transition at about 200 K. The observed ferromagnetic resonance spectra have three distinct resonance modes at room temperature, which are fully recreated in our micromagnetic simulations, showing also how the intra-SAF asymmetry can be used to create and control the higher-order resonances in the structure. Below the Curie temperature of the spacer, the system effectively transitions into a single-layer nanodisk array with only two resonance modes. Our results show how multilayering of nanoarrays can add tunable GHz functionality relevant for such rapidly developing fields as magnetic metamaterials, magnonic crystals, arrays of spin-torque oscillators, and neuromorphic junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call