Abstract

This article shows the capability of using a higher order dynamic mode decomposition (HODMD) algorithm both to identify flow patterns and to extrapolate a transient solution to the attractor region. Numerical simulations are carried out for the three-dimensional flow around a circular cylinder, and both standard dynamic mode decomposition (DMD) and higher order DMD are applied to the non-converged solution. The good performance of HODMD is proved, showing that this method guesses the converged flow patterns from numerical simulations in the transitional region. The solution obtained can be extrapolated to the attractor region. This fact sheds light on the capability of finding real flow patterns in complex flows and, simultaneously, reducing the computational cost of the numerical simulations or the required quantity of data collected in experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.