Abstract

The energy levels of the double-well potential receive, beyond perturbation theory, contributions which are non-analytic in the coupling strength; these are related to instanton effects. For example, the separation between the energies of odd- and even-parity states is given at leading order by the one-instanton contribution. However to determine the energies more accurately multi-instanton configurations have also to be taken into account. We investigate here the two-instanton contributions. First we calculate analytically higher-order corrections to multi-instanton effects. We then verify that the difference betweeen numerically determined energy eigenvalues and the generalized Borel sum of the perturbation series can be described to very high accuracy by two-instanton contributions. We also calculate higher-order corrections to the leading factorial growth of the perturbative coefficients and show that these are consistent with analytic results for the two-instanton effect and with exact data for the first 200 perturbative coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call