Abstract

We present a coordinate-free approach for constructing approximate first integrals of generalized slow-fast Hamiltonian systems, based on the global averaging method on parameter-dependent phase spaces with \documentclass[12pt]{minimal}\begin{document}$\mathbb {S}^1$\end{document}S1-symmetry. Explicit global formulas for approximate second-order first integrals are derived. As examples, we analyze the case quadratic in the fast variables (in particular, the elastic pendulum), and the charged particle in a slowly-varying magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.