Abstract
The auxiliary field quantum Monte Carlo (AFQMC) method has been a workhorse in the field of strongly correlated electrons for a long time and has found its most recent implementation in the ALF package (alf.physik.uni-wuerzburg.de). The utilization of the Trotter decomposition to decouple the interaction from the non-interacting Hamiltonian makes this method inherently second order in terms of the imaginary time slice. We show that due to the use of the Hubbard-Stratonovich transformation (HST) a semigroup structure on the time evolution is imposed that necessitates the introduction of a new family of complex-hermitian splitting methods for the purpose of reaching higher order. We will give examples of these new methods and study their efficiency, as well as perform comparisons with other established second and higher order methods in the realm of the AFQMC method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.