Abstract
An approximation to order T−2 is obtained for the bias of the full vector of least-squares estimates obtained from a sample of size T in general stable but not necessarily stationary ARX(1) models with normal disturbances. This yields generalizations, allowing for various forms of initial conditions, of Kendall’s and White’s classic results for stationary AR(1) models. The accuracy of various alternative approximations is examined and compared by simulation for particular parameterizations of AR(1) and ARX(1) models. The results show that often the second-order approximation is considerably better than its first-order counterpart and hence opens up perspectives for improved bias correction. However, order T−2 approximations are also found to be more vulnerable in the near unit root case than the much simpler order T−1 approximations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.