Abstract

Sleep deprivation and the consequent circadian clock disruption has become an emergent health question being associated with premature aging and earlier chronic diseases onset. Night-shift work leads to circadian clock misalignment, which is linked to several age-related diseases. However, mechanisms of this association are not well understood. Aim of this study is to explore in night-shift workers early indicators of oxidative stress response and biological aging [oxidized/methylated DNA bases and leukocytes telomere length (LTL)] and late indicators of functional aging [lung function measurements (FEV1 and FVC)] in relation to personal evaluation of work capacity, measured by work ability index (WAI). One hundred fifty-five hospital workers were studied within the framework of a cross-sectional study. We collected physiological, pathological, and occupational history including pack-years, alcohol consumption, physical activity, and night shifts, together with blood and urine samples. Relationships were appraised by univariate and multivariate ordered-logistic regression models. We found that workers with good and excellent WAI present higher FEV1 (p< 0.01) and number of night-work shifts (p<0.05), but they reveal higher urinary levels of 8-oxoGua (p<0.01) and shorter LTL (p<0.05). We confirmed that higher work ability was prevalent among chronological younger workers (p<0.05), who have also a significant reduced number of diseases, particularly chronic (p<0.01) and musculoskeletal diseases (p<0.01). The new findings which stem from our work are that subjects with the highest work ability perception may have more demanding and burdensome tasks; they in fact present the highest number of night-shift work and produce unbalanced oxidative stress response that might induce premature aging.

Highlights

  • The growing aging of the population is an emerging social and public health problem, even in the workplace

  • The results show that higher work ability is positively related to lung function assessed by FEV1 (p=0.001), it was negatively associated with higher levels of urinary 8-oxoGua (p=0.005) and has shorter leukocytes telomere length (LTL) (p=0.049)

  • Workers with good and excellent work ability exhibit a higher number of night-work shifts and in the meantime present higher levels of urinary 8-oxoGua, the most important biomarker of oxidative damage to DNA and specific of the activation of hOGG1 enzyme involved in the base DNA excision repair mechanism; second, workers, with the upper levels of work ability and higher oxidatively DNA damaged biomarker, have shorter LTL; third, good and excellent work ability is positively related to lung function assessed by FEV1

Read more

Summary

Introduction

The growing aging of the population is an emerging social and public health problem, even in the workplace. Prolonged working lives underscore importance for public health in recognizing a close connection of work ability with aging and health [2]. By age of 50 years, half of the population have at least one chronic disease and are three times more likely to report that they are unable to work due to health problems [3]. Sleep deprivation and the consequent circadian clock disruption has become an emerging health issue being associated with premature aging and early onset of chronic conditions including obesity, cardiovascular diseases (CVD), metabolic diseases (MetS), and cancer [4].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call