Abstract

Flavor stability is a significant concern to brewers as the staling compounds impart unpleasant flavor to beer. Thus, yeasts with antistaling ability have been engineered to produce beer with improved flavor stability. Here, we proposed that increasing the NADH availability of yeast could improve the flavor stability of beer. By engineering endogenous pathways, we obtained an array of yeast strains with a higher reducing activity. Then, we carried out beer fermentation with these strains and found that the antistaling capacities of the beer samples were improved. For a better understanding of the underlying mechanism, we compared the flavor profiles of these strains. The production of staling components was significantly decreased, whereas the content of antistaling components, such as SO2, was increased, in line with the increased antistaling ability. The other aroma components were marginally changed, indicating that this concept was useful for improving the antistaling stability without changing the flavor of beer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.