Abstract

We perform cosmological N-body simulations with non-Gaussian initial conditions generated from two independent fields. The dominant contribution to the perturbations comes from a purely Gaussian field, but we allow the second field to have local non-Gaussianity that need not be weak. This scenario allows us to adjust the relative importance of non-Gaussian contributions beyond the skewness, producing a scaling of the higher moments different from (and stronger than) the scaling in the usual single field local ansatz. We compare semi-analytic prescriptions for the non-Gaussian mass function, large scale halo bias, and stochastic bias against the simulation results. We discuss applications of this work to large scale structure measurements that can test a wider range of models for the primordial fluctuations than is usually explored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.