Abstract

AbstractCerambycidae (longhorn beetles) and related families in the superfamily Chrysomeloidea are important components of forest ecosystems and play a key role in nutrient cycling and pollination. Using full mitochondrial genomes and dense taxon sampling, the phylogeny of Chrysomeloidea with a focus on Cerambycidae and allied families was explored. We used 151 mitochondrial genomes (75 newly sequenced) covering all families and 29 subfamilies of Chrysomeloidea. Our results reveal that (i) Chrysomelidae (leaf beetles) are sister to all other chrysomeloid families; (ii) Cerambycidae sensu stricto (s. s.) is polyphyletic due to the inclusion of other families that split Cerambycidae into a ‘lamiine’ clade comprising Lepturinae sensu lato (s. l.) + (Lamiinae + Spondylidinae) and a ‘cerambycine’ clade comprising Dorcasominae + (Cerambycinae + Prioninae s. l.); (iii) the subfamilies within the two clades of Cerambycidae s. s. were monophyletic, except for the placement of Necydalinae nested in Lepturinae, and the placement of Parandrinae within Prioninae (now considered as tribes Necydalini and Parandrini, respectively); (iv) smaller families were grouped into two major clades: one composed of Disteniidae+Vesperidae and the other composed of Orsodacnidae + (Megalopodidae + Oxypeltidae); (v) relationships among the four major clades were poorly supported but were resolved as ((cerambycines + (Disteniidae + Vesperidae) + Orsodacnidae + (Megalopodidae + Oxypeltidae)) + lamiines. Divergence time analyses estimated that Chrysomeloidea originated ca. 154.1 Mya during the late Jurassic, and most subfamilies of Cerambycidae originated much earlier than subfamilies of Chrysomelidae. The diversification of families within Chrysomeloidea was largely coincident with the radiation of angiosperms during the Early Cretaceous.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call