Abstract

As drought has caused great losses of tree growth across the world, the mechanism of how trees adapt to drought has been extensively investigated. However, how trees change their late- to earlywood ratio (LER) to adapt to severe drought events remains poorly understood. We used a network of Larix principis-rupprechtii earlywood and latewood width data from 1979 to 2018, covering most of the distribution of planted larch across North China, to investigate how latewood proportion affected trees' resistance to drought. The interactions among LER, minimum temperature, vapor pressure deficit (VPD), growing season length, and their contributions to drought resistant (Rt) were estimated using structural equation models. The results show a significant increase in LER of the juvenile wood throughout the first 15 growth rings after which it stabilizes. The LER decreased significantly with elevation for the juvenile wood. March–May temperature and VPD were the main determinant in the LER of mature wood. The sensitivity of radial growth to droughts was positively changed with LER when LER was below 0.50, but negatively changed with LER when LER is above 0.50. We confirmed that high LER increases resistance of tree growth to severe droughts in L. principis-rupprechtii. Our results highlight that a higher proportion of latewood is formed in dry years, and this high drought sensitivity of LER in turn led to an increased resistance to drought. This combination of reduced radial growth during dry years, while the latewood proportion remains increases maybe an adaptive strategy of larch trees to cope with severe droughts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call