Abstract

The Atiyah–Singer index theorem has been vastly generalized to higher index theory for elliptic operators in the context of noncommutative geometry. Higher index theory has important applications to problems in differential topology and differential geometry such as the Novikov Conjecture on homotopy invariance of higher signatures and the existence problem of Riemannian metrics with positive scalar curvature. In this article, I will give a survey on recent development of higher index theory, its applications, and its fascinating connection to the geometry of groups and metric spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.