Abstract

For lithium halides, LiX (X = Cl, Br and I), hydrates with a water content of 1, 2, 3 and 5 moles of water per formula unit are known as phases in aqueous solid-liquid equilibria. The crystal structures of the monohydrates of LiCl and LiBr are known, but no crystal structures have been reported so far for the higher hydrates, apart from LiI·3H2O. In this study, the crystal structures of the di- and trihydrates of lithium chloride, lithium bromide and lithium iodide, and the pentahydrates of lithium chloride and lithium bromide have been determined. In each hydrate, the lithium cation is coordinated octahedrally. The dihydrates crystallize in the NaCl·2H2O or NaI·2H2O type structure. Surprisingly, in the tri- and pentahydrates of LiCl and LiBr, one water molecule per Li+ ion remains uncoordinated. For LiI·3H2O, the LiClO4·3H2O structure type was confirmed and the H-atom positions have been fixed. The hydrogen-bond networks in the various structures are discussed in detail. Contrary to the monohydrates, the structures of the higher hydrates show no disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.