Abstract

Antiferromagnetic (AFM) materials are attracting tremendous attention due to their spintronic applications and associated novel topological phenomena. However, detecting and identifying the spin configurations in AFM materials are quite challenging due to the absence of net magnetization. Herein, we report the practicality of utilizing the planar Hall effect (PHE) to detect and distinguish “cluster magnetic multipoles” in AFM Nd2Ir2O7 (NIO-227) fully strained films. By imposing compressive strain on the spin structure of NIO-227, we artificially induced cluster magnetic multipoles, namely dipoles and A2- and T1-octupoles. Importantly, under magnetic field rotation, each magnetic multipole exhibits distinctive harmonics of the PHE oscillation. Moreover, the planar Hall conductivity has a nonlinear magnetic field dependence, which can be attributed to the magnetic response of the cluster magnetic octupoles. Our work provides a strategy for identifying cluster magnetic multipoles in AFM systems and would promote octupole-based AFM spintronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call