Abstract
Currently available models for spatial extremes suffer either from inflexibility in the dependence structures that they can capture, lack of scalability to high dimensions, or in most cases, both of these. We present an approach to spatial extreme value theory based on the conditional multivariate extreme value model, whereby the limit theory is formed through conditioning upon the value at a particular site being extreme. The ensuing methodology allows for a flexible class of dependence structures, as well as models that can be fitted in high dimensions. To overcome issues of conditioning on a single site, we suggest a joint inference scheme based on all observation locations, and implement an importance sampling algorithm to provide spatial realizations and estimates of quantities conditioning upon the process being extreme at any of one of an arbitrary set of locations. The modelling approach is applied to Australian summer temperature extremes, permitting assessment of the spatial extent of high temperature events over the continent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.