Abstract
We investigate general properties of Kerr–Schild (KS) metrics in n > 4 spacetime dimensions. First, we show that the Weyl tensor is of type II or more special if the null KS vector k is geodetic (or, equivalently, if Tabkakb = 0). We subsequently specialize to vacuum KS solutions, which naturally split into two families of non-expanding and expanding metrics. After demonstrating that non-expanding solutions are equivalent to the known class of vacuum Kundt solutions of Weyl type N, we analyze expanding solutions in detail. We show that they can only be of the type II or D, and we characterize optical properties of the multiple Weyl aligned null direction (WAND) k. In general, k has caustics corresponding to curvature singularities. In addition, it is generically shearing. Nevertheless, we arrive at a possible ‘weak’ n > 4 extension of the Goldberg–Sachs theorem, limited to the KS class, which matches previous conclusions for general type III/N solutions. In passing, properties of Myers–Perry black holes and black rings related to our results are also briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.