Abstract
Let [Formula: see text] be a smooth complex projective variety, [Formula: see text] a morphism to an abelian variety such that [Formula: see text] injects into [Formula: see text] and let [Formula: see text] be a line bundle on [Formula: see text]; denote by [Formula: see text] the minimum of [Formula: see text] for [Formula: see text]. The so-called Clifford–Severi inequalities have been proven in [M. A. Barja, Generalized Clifford–Severi inequality and the volume of irregular varieties, Duke Math. J. 164(3) (2015) 541–568; M. A. Barja, R. Pardini and L. Stoppino, Linear systems on irregular varieties, J. Inst. Math. Jussieu (2019) 1–39; doi:10.1017/S1474748019000069]; in particular, for any [Formula: see text] there is a lower bound for the volume given by: [Formula: see text] and, if [Formula: see text] is pseudoeffective, [Formula: see text] In this paper, we characterize varieties and line bundles for which the above Clifford–Severi inequalities are equalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.