Abstract

A description of the spectral and angular distributions of Compton scattered light in collisions of intense laser pulses with high-energy electrons is unwieldy and usually requires numerical simulations. However, due to the large number of parameters affecting the spectra such numerical investigations can become computationally expensive. Using methods of catastrophe theory we predict higher-dimensional caustics in the spectra of the Compton scattered light, which are associated with bright narrow-band spectral lines, and in the simplest case can be controlled by the value of the linear chirp of the pulse. These findings require no full-scale calculations and have direct consequences for the photon yield enhancement of future nonlinear Compton scattering x-ray or gamma-ray sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.