Abstract

Assessments of functional connectivity between brain networks is a fixture of resting state fMRI research. Until very recently most of this work proceeded from an assumption of stationarity in resting state network connectivity. In the last few years however, interest in moving beyond this simplifying assumption has grown considerably. Applying group temporal independent component analysis (tICA) to a set of time-varying functional network connectivity (FNC) matrices derived from a large multi-site fMRI dataset (N=314; 163 healthy, 151 schizophrenia patients), we obtain a set of five basic correlation patterns (component spatial maps (SMs)) from which observed FNCs can be expressed as mutually independent linear combinations, i.e., the coefficient on each SM in the linear combination is maximally independent of the others. We study dynamic properties of network connectivity as they are reflected in this five-dimensional space, and report stark differences in connectivity dynamics between schizophrenia patients and healthy controls. We also find that the most important global differences in FNC dynamism between patient and control groups are replicated when the same dynamical analysis is performed on sets of correlation patterns obtained from either PCA or spatial ICA, giving us additional confidence in the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.